Фильтры для воды - Проблемы с водой

рабочее время

Пон- пят: 10.00 - 19.00

звоните

8 (495) 41-41-0-41 (многоканальный)

8-909-698-88-80 отдел продаж

8-910-469-82-22 тех- поддержка

пишите

info@amazonfilter.ru

ОСНОВНЫЕ ВИДЫ ЗАГРЯЗНЕНИЯ ВОДЫ

ЖЕЛЕЗО

 

Железо существует в природе в различных формах (в завиисмости от валентности), а также в виде различных химических соединений.

1. Механическое железо (Fe0). Содержится в воде в безусловно нерастворимом виде. В присутствии влаги и кислорода окисляется до трехвалентного, образуя нерастворимый оксид Fe2O3 (процесс, известный в быту как "появление ржавчины").

2. Двухвалентное железо (Fe+2). Почти всегда находится в воде в расворенном состоянии, хотя возможны случаи, когда способно выпадать в осадок (при определенном значении водородного показателя рН).

3. Трехвалентное железо (Fe+3). Гидрооксид железа Fe(OH)2 нерастворим в воде (кроме случаев очень низкого рН). Хлорид и сульфат трехвалентного железа - растворимы в воде и могут образовываться даже в слабощелочных водах.

4. Органическое железо. Органические соединения железа, как правило, растворимы в воде или имеют коллоидную структуру и очень трудно выводятся из воды. Существуют следующие виды органического железа:

- Бактериальное железо. Своим появлением в воде обязано бактериям,  использующим в процессе своей жизнедеятельности энергию растворенного железа. В результате происходит преобразование двухвалентного железа в трехвалентное, которое выделяется в виде желеобразной оболочки вокруг бактерии.

- Коллоидное железо. Коллоиды (нерастворимые частицы размером менее 1 микрона) трудно поддаются фильтрации на гранулированных фильтрующих засыпках типа Birm. Из-за своего малого размера и высокого поверхностного заряда коллоидные частицы образуют в воде суспензии и не осаждаются, находясь во взвешенном состоянии.

- Растворимое органическое железо. Это некоторые виды органических молекул, способных связывать железо в сложные растворимые комплексы, называемые хелатами (на подобии кровяного  гемоглобина или хлорофилла растений). Прекрасным хелатообразующим агентом является гуминовая кислота, играющая важную роль в почвенном ионообмене.

Основные проявления перечисленных выше разновидностей железа приведены в таблице.

Тип железа Вода из-под крана Вода после отстаивания
Двухвалентное Прозрачная Красно-бурый садок
Трехвалентное Окрашена Красно-бурый осадок
Коллоидное Желто-бурая Не образует осадка, не фильтруется
Растворенное органическое Желто-бурая Не образует осадка, не фильтруется
Бактериальное Опалесцирующая пленка, желеобразные образования в воде  

 

 

Содержащая железо вода (особенно подземная) сперва прозрачна и чиста на вид. Однако даже при непродолжительном контакте с кислородом воздуха железо окисляется, придавая воде желтовато-бурую окраску. Уже при концентрациях железа выше 0,3 мг/л такая вода способна вызвать появление ржавых потеков на сантехнике и пятен на белье при стирке. При содержании железа выше 1 мг/л вода становится мутной, окрашивается в желто-бурый цвет, у нее ощущается характерный металлический привкус. Все это делает такую воду практически неприемлемой как для технического, так и для питьевого применения. По органолептическим признакам предел содержания железа в воде практически повсеместно установлен на уровне 0,3 мг/л (а по нормам ЕС даже 0,2 мг/л). Здесь необходимо подчеркнуть, что это ограничение именно по органолептическим соображениям. По показаниям вредности для здоровья такой параметр не установлен.

В российской прессе регулярно проскакивают упоминания о вредном воздействии железа на организм, причем в концентрациях уже выше 0,3 мг/л. Безусловно, в больших количествах железо, как и любое другое химическое вещество, способно вызвать в организме человека нарушения и даже патологии. Учитывая, однако, что железо очень трудно усваиваемый элемент, особенно в неорганической форме (в которой оно в основном и содержится в воде), представляется, что «перебрать» его достаточно трудно.

Что же касается вредного воздействия железа при его поступлении в организм с пищей и водой, то Всемирная Организация Здравоохранения (ВОЗ) не предлагает какой-либо рекомендуемой величины по показания здоровья, так как нет достаточных данных о негативном воздействии железа на организм человека. При уровне установленного ВОЗ переносимого суточного потребления (ПСП) железа, равном 0.8 мг/кг массы тела человека, безопасное для здоровья суммарное содержание железа в воде составляет 2 мг/л. Это означает, что употребляя ежедневно на протяжении всей жизни такую воду, можно не опасаться за последствия для здоровья (другое дело, что вода с 2 мг/л железа будет иметь весьма «неаппетитный» вид).

 

 

ЖЕСТКОСТЬ

 

Жесткостью называют свойство воды, обусловленное наличием в ней растворимых солей кальция и магния. Мы будем под жесткостью понимать в дальнейшем общую жесткость, обусловленную суммарной концентрацией ионов кальция и магния. Представляет собой сумму карбонатной (временной) и некарбонатной (постоянной) жесткости. 

Ионы кальция (Ca2+) и магния (Mg2+), а также других щелочноземельных металлов, обуславливающих жесткость, присутствуют во всех минерализованных водах. Их источником являются природные залежи известняков, гипса и доломитов. Ионы кальция и магния поступают в воду в результате взаимодействия растворенного диоксида углерода с минералами и при других процессах растворения и химического выветривания горных пород. Источником этих ионов могут служить также микробиологические процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий. Жесткость воды колеблется в широких пределах и существует множество типов классификаций воды по степени ее жесткости.

В целом, жесткость поверхностных вод, как правило, меньше жесткости вод подземных. Жесткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период половодья, когда обильно разбавляется мягкой дождевой и талой водой. Морская и океанская вода имеют очень высокую жесткость (десятки и сотни мг-экв/дм3).

С точки зрения применения воды для питьевых нужд, ее приемлемость по степени жесткости может существенно варьироваться в зависимости от местных условий. Порог вкуса для иона кальция лежит (в пересчете на мг-эквивалент) в диапазоне 2-6 мг-экв/л, в зависимости от соответствующего аниона, а порог вкуса для магния и того ниже. В некоторых случаях для потребителей приемлема вода с жесткостью выше 10 мг-экв/л. Высокая жесткость ухудшает органолептические свойства воды, придавая ей горьковатый вкус и оказывая отрицательное действие на органы пищеварения.

Всемирная Организация Здравоохранения не предлагает какой-либо рекомендуемой величины жесткости по показаниям влияния на здоровье. В материалах ВОЗ говорится о том, что хотя ряд исследований и выявил статистически обратную зависимость между жесткостью питьевой воды и сердечно-сосудистыми заболеваниями, имеющиеся данные не достаточны для вывода о причинном характере этой связи. Аналогичным образом, однозначно не доказано, что мягкая вода оказывает отрицательный эффект на баланс минеральных веществ в организме человека.

Вместе с тем, в зависимости от рН и щелочности, вода с жесткостью выше 4 мг-экв/л может вызвать в распределительной системе отложение шлаков и накипи (карбоната кальция), особенно при нагревании.  Именно поэтому нормами Котлонадзора вводятся очень жесткие требования к величине жесткости воды, используемой для питания котлов (0,05-0,1 мг-экв/л).

Кроме того, при взаимодействии солей жесткости с моющими веществами (мыло, стиральные порошки, шампуни) происходит образование «мыльных шлаков» в виде пены. Это приводит не только к значительному перерасходу моющих средств. Такая пена после высыхания остается в виде налета на сантехнике, белье, человеческой коже, на волосах (неприятное чувство жестких волос хорошо известное многим). Главным отрицательным воздействием этих шлаков на человека является то, что они разрушают естественную жировую пленку, которой всегда покрыта нормальная кожа и забивают ее поры. Признаком такого негативного воздействия является характерный скрип чисто вымытой кожи или волос. Оказывается, что вызывающее у некоторых раздражение чувство «мылкости» после пользования мягкой водой является признаком того, что защитная жировая пленка на коже цела и невредима. Именно она и скользит. В противном случае, приходится тратиться на лосьоны, умягчающие и увлажняющие кремы и прочие хитрости для восстановление этой защиты.

Вместе с тем, необходимо упомянуть и о другой стороне медали. Мягкая вода с жесткостью менее 2 мг-экв/л имеет низкую буферную емкость (щелочность) и может, в зависимости от уровня рН и ряда других факторов, оказывать повышенное коррозионное воздействие на водопроводные трубы. Поэтому, в ряде применений (особенно в теплотехнике) иногда приходится проводить специальную обработку воды с целью достижения оптимального соотношения между жесткостью и ее коррозионной активностью.

 

 

ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ

 

Водородный показатель рН характеризует концентрацию свободных ионов водорода в воде.

Если говорить проще, то величина рН определяется количественным соотношением в воде ионов Н+ и ОН–, образующихся при диссоциации воды. Если в воде пониженное содержание свободных ионов водорода (рН>7) по сравнению с ионами ОН–, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н+ (рН<7)-кислую. В идеально чистой дистиллированной воде эти ионы будут уравновешивать друг друга. В таких случаях вода нейтральна и рН=7. При растворении в воде различных химических веществ этот баланс может быть нарушен, что приводит к изменению уровня рН.

Очень часто показатель рН путают с такими параметрами, как кислотность и щелочность воды. Важно понимать разницу между ними. Главное заключается в том, что рН – это показатель интенсивности, но не количества. То есть, рН отражает степень кислотности или щелочности среды, в то время как кислотность и щелочность характеризуют количественное содержание в воде веществ, способных нейтрализовывать соответственно щелочи и кислоты. В качестве аналогии можно привести пример с температурой, которая характеризует степень нагрева вещества, но не количество тепла. Например, опустив руку в воду, мы можем сказать какая вода – прохладная или теплая, но при этом не сможем определить, сколько в ней тепла (т.е. условно говоря, как долго эта вода будет остывать).

pH воды – один из важнейших рабочих показателей качества воды, во многом определяющих характер химических и биологических процессов, происходящих в воде. В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и т.д.

Контроль уровня рН особенно важен на всех стадиях водоочистки, так как его «уход» в ту или иную сторону может не только существенно сказаться на запахе, привкусе и внешнем виде воды, но и повлиять на эффективность водоочистных мероприятий. Оптимальная требуемая величина рН варьируется для различных систем водоочистки в соответствии с составом воды, характером материалов, применяемых в системе распределения, а также в зависимости от применяемых методов водо-обработки. Обычно уровень рН находится в пределах, при которых он непосредственно не влияет на потребительские качества воды. Так, в речных водах pH обычно находится в пределах 6,5-8,5, в атмосферных осадках 4,6-6,1, в болотах 5,5-6,0, в морских водах 7,9-8,3. Поэтому ВОЗ не предлагает какой-либо рекомендуемой по медицинским показателям величины для рН. Вместе с тем известно, что при низком рН вода обладает высокой коррозионной активностью, а при высоких уровнях (рН>11) вода приобретает характерную мылкость, неприятный запах, способна вызывать раздражение глаз и кожи. Именно поэтому для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9.

 

 

ПЕРМАНГАНАТНАЯ ОКИСЛЯЕМОСТЬ

 

Окисляемость – это величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых (при определенных условиях) одним из сильных химических окислителей.

Выражается этот параметр в миллиграммах кислорода, необходимого на окисление этих веществ, содержащихся в 1 дм3 воды. Различают несколько видов окисляемости воды: перманганатную, бихроматную, иодатную, цериевую. Наиболее высокая степень окисления достигается бихроматным и иодатным методами. В практике водоочистки для природных малозагрязненных вод определяют перманганатную окисляемость, а в более загрязненных водах – как правило, бихроматную окисляемость (называемую также ХПК – «химическое потребление кислорода»).

Окисляемость является очень удобным комплексным параметром, позволяющим оценить общее загрязнение воды органическими веществами.

Органические вещества, находящиеся в воде весьма разнообразны по своей природе и химическим свойствам. Их состав формируется как под влиянием внутриводоемных биохимических процессов, так и за счет поступления поверхностных и подземных вод, атмосферных осадков, промышленных и хозяйственно-бытовых сточных вод.

Величина окисляемости природных вод может варьироваться в широких пределах от долей миллиграммов до десятков миллиграммов О2 на литр воды. Поверхностные воды имеют более высокую окисляемость, а значит и более «богаты» органикой по сравнению с подземными.
Так, горные реки и озера характеризуются окисляемостью 2-3 мг О2/дм3, реки равнинные – 5-12 мг О2/дм3, реки с болотным питанием – десятки миллиграммов на 1 дм3.

Подземные же воды имеют в среднем окисляемость на уровне от сотых до десятых долей миллиграмма О2/дм3 (исключения составляют воды в районах нефтегазовых месторождений, торфяников, в сильно заболоченных местностях).

Информация о компании